
event.cwi.nl/lsde

Large-Scale Data Engineering

SQL on Big Data

event.cwi.nl/lsde

THE DEBATE:
DATABASE SYSTEMS VS
MAPREDUCE

event.cwi.nl/lsde

A major step backwards?

• MapReduce is a step backward in database access

– Schemas are good

– Separation of the schema from the application is good

– High-level access languages are good

• MapReduce is poor implementation

– Brute force and only brute force (no indexes, for example)

• MapReduce is not novel

• MapReduce is missing features

– Bulk loader, indexing, updates, transactions…

• MapReduce is incompatible with DMBS tools

Source: Blog post by DeWitt and Stonebraker

Michael Stonebraker

Turing Award 2015

event.cwi.nl/lsde

Known and unknown unknowns

• Databases only help if you know what questions to ask

– “Known unknowns”

• What’s if you don’t know what you’re looking for?

– “Unknown unknowns”

event.cwi.nl/lsde

ETL: redux

• Often, with noisy datasets, ETL is the analysis!

• Note that ETL necessarily involves brute force data scans

• L, then E and T?

event.cwi.nl/lsde

Structure of Hadoop warehouses

Source: Wikipedia (Star Schema)

Don’t normalize!

event.cwi.nl/lsde

Relational databases vs. MapReduce

• Relational databases:

– Multipurpose: analysis and transactions; batch and interactive

– Data integrity via ACID transactions

– Lots of tools in software ecosystem (for ingesting, reporting, etc.)

– Supports SQL (and SQL integration, e.g., JDBC)

– Automatic SQL query optimization

• MapReduce (Hadoop):

– Designed for large clusters, fault tolerant

– Data is accessed in “native format”

– Supports many query languages

– Programmers retain control over performance

– Open source

Source: O’Reilly Blog post by Joseph Hellerstein (11/19/2008)

event.cwi.nl/lsde

Philosophical differences

• Parallel relational databases

– Schema on write

– Failures are relatively infrequent

– “Possessive” of data

– Mostly proprietary

• MapReduce

– Schema on read

– Failures are relatively common

– In situ data processing

– Open source

event.cwi.nl/lsde

MapReduce vs. RDBMS: grep

SELECT * FROM Data WHERE field LIKE ‘%XYZ%’;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

event.cwi.nl/lsde

MapReduce vs. RDBMS: select

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

event.cwi.nl/lsde

MapReduce vs. RDBMS: aggregation

SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

event.cwi.nl/lsde

MapReduce vs. RDBMS: join

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

event.cwi.nl/lsde

Why?

• Schemas are a good idea

– Parsing fields out of flat text files is slow

– Schemas define a contract, decoupling logical from physical

• Schemas allow for building efficient auxiliary structures

– Value indexes, join indexes, etc.

• Relational algorithms have been optimised for the underlying system

– The system itself has complete control of performance-critical decisions

– Storage layout, choice of algorithm, order of execution, etc.

event.cwi.nl/lsde

Storage layout: row vs. column stores

R1

R2

R3

R4

Row store

Column store

event.cwi.nl/lsde

Storage layout: row vs. column stores

• Row stores

– Easy to modify a record

– Might read unnecessary data when processing

• Column stores

– Only read necessary data when processing

– Tuple writes require multiple accesses

event.cwi.nl/lsde

Advantages of column stores

• Read efficiency

– If only need to access a few columns, no need to drag around the rest

of the values

• Better compression

– Repeated values appear more frequently in a column than repeated

rows appear

• Vectorised processing

– Leveraging CPU architecture-level support

• Opportunities to operate directly on compressed data

– For instance, when evaluating a selection; or when projecting a column

event.cwi.nl/lsde

Why not in Hadoop?

Source: He et al. (2011) RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce-based Warehouse Systems. ICDE.

No reason why not

RCFile

event.cwi.nl/lsde

Some small steps forward

• MapReduce is a step backward in database access:

– Schemas are good

– Separation of the schema from the application is good

– High-level access languages are good

• MapReduce is poor implementation

– Brute force and only brute force (no indexes, for example)

• MapReduce is not novel

• MapReduce is missing features

– Bulk loader, indexing, updates, transactions…

• MapReduce is incompatible with DMBS tools

✔
✔

✔

Source: Blog post by DeWitt and Stonebraker

?

?

event.cwi.nl/lsde

MODERN
SQL-ON-HADOOP SYSTEMS

event.cwi.nl/lsde

Analytical Database Systems

Parallel (MPP):

Teradata Paraccel

Pivotal

Vertica Redshift

Oracle (IMM) Netteza

DB2-BLU InfoBright

SQLserver Vectorwise

(columnstore)

open source:

MySQL LucidDB

MonetDB

?

event.cwi.nl/lsde

SQL-on-Hadoop Systems

Open Source:

• Hive (HortonWorks)

• Impala (Cloudera)

• Drill (MapR)

• Presto (Facebook)

Commercial:

• HAWQ (Pivotal)

• Vortex (Actian)

• Vertica Hadoop (HP)

• BigQuery (IBM)

• DataBricks

• Splice Machine

• CitusData

• InfiniDB Hadoop

event.cwi.nl/lsde

“wrapped

 legacy”

“from

scratch”

SQL
Maturity

(performance+features)

Hadoop Integration

 “SQL on Hadoop” Systems

Low Native

High

“outside

Hadoop”

event.cwi.nl/lsde

Analytical DB engines for Hadoop
 storage

–columnar storage + compression

–table partitioning / distribution

–exploiting correlated data
 query-processor

 CPU-efficient query engine

 (vectorized or JIT codegen)

 many-core ready

 rich SQL (+authorization+..)

 system

 batch update infrastructure

 scaling with multiple nodes

 MetaStore & file formats

 YARN & elasticity

event.cwi.nl/lsde

Columnar Storage

row-store column-store

Date Customer Product Store

+ easy to add/modify a record

- might read in unnecessary data

+ only need to read in relevant data

- tuple writes require multiple accesses

=> suitable for read-mostly, read-intensive, large data repositories

Date Store Product Customer Price
Price

Query on data and store

Inserting a new record

event.cwi.nl/lsde

Analytical DB engines for Hadoop
 storage

–columnar storage + compression

–table partitioning / distribution

–exploiting correlated data
 query-processor

 CPU-efficient query engine

 (vectorized or JIT codegen)

 many-core ready

 rich SQL (+authorization+..)

 system

 batch update infrastructure

 scaling with multiple nodes

 MetaStore & file formats

 YARN & elasticity

event.cwi.nl/lsde

Columnar Compression

• Trades I/O for CPU

– A winning proposition currently

– Even trading RAM bandwidth for CPU wins

• 64 core machines starved for RAM bandwidth

• Additional column-store synergy:

– Column store: data of the same distribution close together

• Better compression rates

• Generic compression (gzip) vs Domain-aware compression

– Synergy with vectorized processing (see later)

compress/decompress/execution, SIMD

– Can use extra space to store multiple copies of data in different

sort orders (see later)

event.cwi.nl/lsde

Run-length Encoding

Q1
Q1
Q1
Q1
Q1
Q1
Q1

Q2
Q2
Q2
Q2

…

…

1
1
1
1
1
2
2

1
1
1
2

…

…

Product ID Quarter

(value, start_pos, run_length)

(1, 1, 5)

…

…

Product ID Quarter

(Q2, 301, 350)

(Q3, 651, 500)

(Q4, 1151, 600)

(2, 6, 2)

(1, 301, 3)
(2, 304, 1)

5
7
2
9
6
8
5

3
8
1
4

…

…

Price

5
7
2
9
6
8
5

3
8
1
4

…

…

Price

(Q1, 1, 300)

(value, start_pos, run_length)

event.cwi.nl/lsde

Bitmap Encoding

1
1
1
1
1
2
2

1
1
2
3

…

…

Product ID

1
1
1
1
1
0
0

1
1
0
0

…

…

ID: 1 ID: 2 ID: 3

0
0
0
0
0
0
0

0
0
0
0

…

…

…

0
0
0
0
0
0
0

0
0
0
1

…

…

0
0
0
0
0
1
1

0
0
1
0

…

…

“Integrating Compression and Execution in Column-Oriented

Database Systems” Abadi et. al, SIGMOD ’06

• For each unique
value, v, in column c,
create bit-vector b

– b[i] = 1 if c[i] = v

• Good for columns
with few unique
values

• Each bit-vector can
be further
compressed if sparse

event.cwi.nl/lsde

Q1
Q2
Q4
Q1
Q3
Q1
Q1

Q2
Q4
Q3
Q3
…

Quarter

Q1

0
1
3
0
2
0
0

1
3
2
2

Quarter

0

0: Q1
1: Q2
2: Q3
3: Q4

Dictionary Encoding

Dictionary

+

“Integrating Compression and Execution in Column-Oriented

Database Systems” Abadi et. al, SIGMOD ’06

• For each unique
value create
dictionary entry

• Dictionary can
be per-block or
per-column

• Column-stores
have the
advantage that
dictionary
entries may
encode multiple
values at once

event.cwi.nl/lsde

Differential Encoding

5:00
5:02
5:03
5:03
5:04
5:06
5:07

5:10
5:15
5:16
5:16
…

Time

5:08

2
1
0
1
2

1

1

0

Time

2

5:00

1

∞
5:15

2 bits per

value

Exceptions (there

are better ways to

deal with

exceptions)

• Encodes values as b bit offset from
previous value

• Special escape code (just like
frame of reference encoding)
indicates a difference larger than
can be stored in b bits

– After escape code, original
(uncompressed) value is written

• Performs well on columns
containing increasing/decreasing
sequences

– inverted lists

– timestamps

– object IDs

– sorted / clustered columns

“Improved Word-Aligned Binary

Compression for Text Indexing” Ahn,

Moffat, TKDE’06

event.cwi.nl/lsde

Heavy-Weight Compression Schemes

• Modern disks (SSDs) can achieve > 1GB/s

• 1/3 CPU for decompression  3GB/s needed

 Lightweight compression schemes are better

 Even better: operate directly on compressed data

“Super-Scalar RAM-CPU Cache Compression”

Zukowski, Heman, Nes, Boncz, ICDE’06

event.cwi.nl/lsde

Examples

• SUMi(rle-compressed column[i])  SUMg(count[g] * value[g])

• (country == “Asia”)  countryCode == 6

 strcmp SIMD

Benefits:

• I/O - CPU tradeoff is no longer a tradeoff (CPU also gets improved)

• Reduces memory–CPU bandwidth requirements

• Opens up possibility of operating on multiple records at once

Operating Directly on Compressed Data

“Integrating Compression and Execution in Column-Oriented

Database Systems” Abadi et. al, SIGMOD ’06

event.cwi.nl/lsde

Analytical DB engines for Hadoop
 storage

–columnar storage + compression

–table partitioning / distribution

–exploiting correlated data
 query-processor

 CPU-efficient query engine

 (vectorized or JIT codegen)

 many-core ready

 rich SQL (+authorization+..)

 system

 batch update infrastructure

 scaling with multiple nodes

 MetaStore & file formats

 YARN & elasticity

event.cwi.nl/lsde

• data is spread based on a Key

– Functions: Hash, Range, List

• “distribution”

– Goal: parallelism

• give each compute node a piece of the data

• each query has work on every piece (keep everyone busy)

• “partitioning”

– Goal: data lifecycle management

• Data warehouse e.g. keeps last six months

• Every night: load one new day, drop the oldest partition

– Goal: improve access patterm

• when querying for May, drop Q1,Q3,Q4 (“partition pruning”)

Table Partitioning and Distribution

distribute by hash

Q1

Q2

Q3

Q4

p
a
rtitio

n
 b

y ra
n

g
e

Which kind of function would you use for which method?

event.cwi.nl/lsde

• Each node writes the partitions it owns

– Where does the data end up, really?

• HDFS default block placement strategy:

– Node that initiates writes gets first copy

– 2nd copy on the same rack

– 3rd copy on a different rack

• Rows from the same record should on the same node

– Not entirely trivial in column stores

• Column partitions should be co-located

– Simple solution:

• Put all columns together in one file (RCFILE, ORCFILE, Parquet)

– Complex solution:

• Replace the default HDFS block placement strategy by a custom one

Data Placement in Hadoop

distribute by hash

Q1

Q2

Q3

Q4

p
a
rtitio

n
 b

y ra
n

g
e

event.cwi.nl/lsde

• Good old CSV

– Textual, easy to parse (but slow), better compress it!

• Sequence Files

– Binary data, faster to process

• RCfile

– Hive first attempt at column-store

• ORCfile

– Columnar compression, MinMax

• Parquet

– Proposed by Twitter and Cloudera Impala

– Like ORCfile, no MinMax

Popular File Formats in Hadoop

distribute by hash

Q1

Q2

Q3

Q4

p
a
rtitio

n
 b

y ra
n

g
e

event.cwi.nl/lsde

Example: Parquet Format

event.cwi.nl/lsde

Example: Parquet Format

event.cwi.nl/lsde

HCatalog (“Hive MetaStore”)

De-facto Metadata Standard on Hadoop

• Where are the tables? Wat do they contain? How are they Partitioned?

• Can I read from them? Can I write to them?

SQL-on-Hadoop challenges:

• Reading-writing many file formats

• Opening up the own datastore to

foreign tools that read from it

HCatalog makes UDFs less

important!

event.cwi.nl/lsde

Analytical DB engines for Hadoop
 storage

–columnar storage + compression

–table partitioning / distribution

–exploiting correlated data
 query-processor

 CPU-efficient query engine

 (vectorized or JIT codegen)

 many-core ready

 rich SQL (+authorization+..)

 system

 batch update infrastructure

 scaling with multiple nodes

 MetaStore & file formats

 YARN & elasticity

event.cwi.nl/lsde

• Data is often naturally ordered

– very often, on date

• Data is often correlated

– orderdate/paydate/shipdate

– marketing campaigns/date

– ..correlation is everywhere

 ..hard to predict

Zone Maps

– Very sparse index

– Keeps MinMax for every column

– Cheap to maintain

• Just widen bounds on

 each modification

Exploiting Natural Order

Q: key BETWEEN 13 AND 15?

Q: acctno BETWEEN 150 AND 200?

z
o

n
e

 0

z
o

n
e

 1

z
o

n
e

 2

3
o

n
e

 3

zone

event.cwi.nl/lsde

Analytical DB engines for Hadoop
 storage

–columnar storage + compression

–table partitioning / distribution

–exploiting correlated data
 query-processor

 CPU-efficient query engine

 (vectorized or JIT codegen)

 many-core ready

 rich SQL (+authorization+..)

 system

 batch update infrastructure

 scaling with multiple nodes

 MetaStore & file formats

 YARN & elasticity

event.cwi.nl/lsde

DBMS Computational Efficiency?
TPC-H 1GB, query 1

• selects 98% of fact table, computes net prices and aggregates all

• Results:

– C program: ?

– MySQL: 26.2s

– DBMS “X”: 28.1s

“MonetDB/X100: Hyper-Pipelining Query

Execution ” Boncz, Zukowski, Nes, CIDR’05

event.cwi.nl/lsde

DBMS Computational Efficiency?
TPC-H 1GB, query 1

• selects 98% of fact table, computes net prices and aggregates all

• Results:

– C program: 0.2s

– MySQL: 26.2s

– DBMS “X”: 28.1s

“MonetDB/X100: Hyper-Pipelining Query

Execution ” Boncz, Zukowski, Nes, CIDR’05

event.cwi.nl/lsde

SCAN

SELECT

PROJECT

alice 22 101

next()

next()

next()

ivan 37 102

ivan 37 102

ivan 37 102

ivan 350 102

alice 22 101

SELECT id, name

 (age-30)*50 AS bonus

FROM employee

WHERE age > 30

350

FALSE TRUE

22 > 30 ? 37 > 30 ?

37 – 30 7 * 50

7

How Do Query Engines Work?

event.cwi.nl/lsde

SCAN

SELECT

PROJECT

next()

next()

next()

ivan 350 102

Operators

Iterator interface

-open()

-next(): tuple

-close()

How Do Query Engines Work?

event.cwi.nl/lsde

SCAN

SELECT

PROJECT

alice 22 101

next()

next()

next()

ivan 37 102

ivan 37 102

ivan 37 102

ivan 350 102

alice 22 101

350

FALSE TRUE

22 > 30 ? 37 > 30 ?

37 – 30 7 * 50

7
Primitives

Provide computational

functionality

All arithmetic allowed in

expressions,

e.g. Multiplication

mult(int,int)  int

7 * 50

How Do Query Engines Work?

event.cwi.nl/lsde

SCAN

SELECT

PROJECT

next()

next()

101

102

104

105

alice

ivan

peggy

victor

22

37

45

25

7

15

FALSE

TRUE

TRUE

FALSE

37

45

ivan

peggy

102

104

350

750

ivan

peggy

102

104

350

750

Observations:

next() called much less
often  more time spent

in primitives less in
overhead

primitive calls process an
array of values in a
loop:

> 30 ?

- 30 * 50

22

37

45

25

alice

ivan

peggy

victor

101

102

104

105

“Vectorized In Cache
Processing”

vector = array of
~100

processed in a tight
loop

CPU cache Resident

next()

“MonetDB/X100: Hyper-Pipelining Query Execution

” Boncz, Zukowski, Nes, CIDR’05

event.cwi.nl/lsde

SCAN

SELECT

PROJECT

next()

next()

101

102

104

105

alice

ivan

peggy

victor

22

37

45

25

7

15

FALSE

TRUE

TRUE

FALSE

37

45

ivan

peggy

102

104

350

750

ivan

peggy

102

104

350

750

Observations:

next() called much less
often  more time spent

in primitives less in
overhead

primitive calls process an
array of values in a
loop:

> 30 ?

- 30 * 50

CPU Efficiency depends on “nice” code
- out-of-order execution
- few dependencies (control,data)
- compiler support

Compilers like simple loops over arrays
- loop-pipelining
- automatic SIMD

22

37

45

25

alice

ivan

peggy

victor

101

102

104

105

next()

“MonetDB/X100: Hyper-Pipelining Query Execution

” Boncz, Zukowski, Nes, CIDR’05

event.cwi.nl/lsde

SCAN

SELECT

PROJECT
FALSE

TRUE

TRUE

FALSE

350

750

Observations:

next() called much less
often  more time spent

in primitives less in
overhead

primitive calls process an
array of values in a
loop:

> 30 ?

* 50

CPU Efficiency depends on “nice” code
- out-of-order execution
- few dependencies (control,data)
- compiler support

Compilers like simple loops over arrays
- loop-pipelining
- automatic SIMD

FALSE

TRUE

TRUE

FALSE

> 30 ?

7

15

- 30

350

750

* 50

for(i=0; i<n; i++)

 res[i] = (col[i] > x)

for(i=0; i<n; i++)

 res[i] = (col[i] - x)

for(i=0; i<n; i++)

 res[i] = (col[i] * x)

“MonetDB/X100: Hyper-Pipelining Query Execution

” Boncz, Zukowski, Nes, CIDR’05

event.cwi.nl/lsde

VLDB 2009 Tutorial 54

Varying the Vector size

Less and less iterator.next()
and

primitive function calls
(“interpretation overhead”)

“MonetDB/X100: Hyper-Pipelining Query

Execution ” Boncz, Zukowski, Nes, CIDR’05

event.cwi.nl/lsde

VLDB 2009 Tutorial 55

Vectors start to exceed the
CPU cache, causing

additional memory traffic

“MonetDB/X100: Hyper-Pipelining Query

Execution ” Boncz, Zukowski, Nes, CIDR’05

Varying the Vector size

event.cwi.nl/lsde

Systems That Use Vectorization

• Actian Vortex (Vectorwise-on-Hadoop)

• Hive, Drill

event.cwi.nl/lsde

Analytical DB engines for Hadoop
 storage

–columnar storage + compression

–table partitioning / distribution

–exploiting correlated data
 query-processor

 CPU-efficient query engine

 (vectorized or JIT codegen)

 many-core ready

 rich SQL (+authorization+..)

 system

 batch update infrastructure

 scaling with multiple nodes

 MetaStore & file formats

 YARN & elasticity

event.cwi.nl/lsde

Analytical DB engines for Hadoop
 storage

–columnar storage + compression

–table partitioning / distribution

–exploiting correlated data
 query-processor

 CPU-efficient query engine

 (vectorized or JIT codegen)

 many-core ready

 analytical SQL (windowing)

 system

 batch update infrastructure

 scaling with multiple nodes

 MetaStore & file formats

 YARN & elasticity

event.cwi.nl/lsde

Asynchronous

Data Transfer

TUPLE MOVER

> Read Optimized

Store (ROS)
• On disk

• Sorted / Compressed

• Segmented

• Large data loaded direct

Batch Update Infrastructure (Vertica)

Challenge: hard to update columnar compressed data

(A B C | A)

A

B

C

Trickle

Load

> Write Optimized

Store (WOS)

Memory based

Unsorted / Uncompressed

 Segmented

 Low latency / Small quick

inserts

A

B

C

event.cwi.nl/lsde

Batch Update Infrastructure (Hive)

Challenge: HDFS read-only + large block size

Merge During Query Processing

event.cwi.nl/lsde

Analytical DB engines for Hadoop
 storage

–columnar storage + compression

–table partitioning / distribution

–exploiting correlated data
 query-processor

 CPU-efficient query engine

 (vectorized or JIT codegen)

 many-core ready

 rich SQL (+authorization+..)

 system

 batch update infrastructure

 scaling with multiple nodes

 MetaStore & file formats

 YARN & elasticity

event.cwi.nl/lsde

SQL-99 OLAP Extensions

• ORDER BY .. PARTITION BY

– window specifications inside a partition

• first_value(), last_value(), …

– Rownum(), dense_rank(), …

event.cwi.nl/lsde

Analytical DB engines for Hadoop
 storage

–columnar storage + compression

–table partitioning / distribution

–exploiting correlated data
 query-processor

 CPU-efficient query engine

 (vectorized or JIT codegen)

 many-core ready

 rich SQL (+authorization+..)

 system

 batch update infrastructure

 scaling with multiple nodes

 MetaStore & file formats

 YARN & elasticity

event.cwi.nl/lsde

Analytical DB engines for Hadoop
 storage

–columnar storage + compression

–table partitioning / distribution

–exploiting correlated data
 query-processor

 CPU-efficient query engine

 (vectorized or JIT codegen)

 many-core ready

 rich SQL (+authorization+..)

 system

 batch update infrastructure

 scaling with multiple nodes

 MetaStore & file formats

 YARN & elasticity

event.cwi.nl/lsde

YARN possibilities and limitations

Containers are used to assign:

• cores

• RAM

Limitations:

• no support for disk I/O, network (thrashing still possible)

• Long-running systems (e.g. DBMS) may want to adjust cores and RAM

over time depending on workload  “elasticity”

event.cwi.nl/lsde

Conclusion

• SQL-on-Hadoop area is very active

– many open-source and commercial initiatives

• There are many design dimensions

– All design dimensions of analytical database systems

• Column storage, compression, vectorization/JIT, MinMax

pushdown, partitioning, parallel scaling, update handling, SQL99,

ODBC/JDBC APIs, authorization

– Hadoop design dimensions

• HCatalog support, reading from and getting read from other

Hadoop tools (/writing to..), file format support, HDFS locality,

YARN integration

event.cwi.nl/lsde

SQL IN THE CLOUD
- BUT NOT ON HADOOP

event.cwi.nl/lsde

Amazon Redshift

• Cloud version of ParAccel, a parallel database

– ParAccel is hard to manage, maintain

– Redshift invested in simplying management, using web interface

• No knobs, kind of elastics, User Defined Functions (python)

• Highly performant, but storage more expensive than S3 (local disks)

event.cwi.nl/lsde

Snowflake

• Brand-new, from-scratch system that works in AWS – RedShift competitor

• Stores data on S3 (cheap!) but caches it in local disks for performance

• Highly elastic, supports UDFs using JavaScript, table snapshots (“clone table”)

• Puts JSON documents in automatically recognized table format (queryable)

