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Large-Scale Data Engineering 

SQL on Big Data 
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THE DEBATE: 
DATABASE SYSTEMS VS 
MAPREDUCE  
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A major step backwards? 

• MapReduce is a step backward in database access 

– Schemas are good 

– Separation of the schema from the application is good 

– High-level access languages are good 

• MapReduce is poor implementation 

– Brute force and only brute force (no indexes, for example) 

• MapReduce is not novel 

• MapReduce is missing features 

– Bulk loader, indexing, updates, transactions… 

• MapReduce is incompatible with DMBS tools 

 

Source: Blog post by DeWitt and Stonebraker 

Michael Stonebraker 

Turing Award 2015 
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Known and unknown unknowns 

• Databases only help if you know what questions to ask 

– “Known unknowns” 

• What’s if you don’t know what you’re looking for? 

– “Unknown unknowns” 
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ETL: redux 

• Often, with noisy datasets, ETL is the analysis! 

• Note that ETL necessarily involves brute force data scans 

• L, then E and T? 
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Structure of Hadoop warehouses 

Source: Wikipedia (Star Schema) 

Don’t normalize! 



event.cwi.nl/lsde 

Relational databases vs. MapReduce 

• Relational databases: 

– Multipurpose: analysis and transactions; batch and interactive 

– Data integrity via ACID transactions 

– Lots of tools in software ecosystem (for ingesting, reporting, etc.) 

– Supports SQL (and SQL integration, e.g., JDBC) 

– Automatic SQL query optimization 

• MapReduce (Hadoop): 

– Designed for large clusters, fault tolerant 

– Data is accessed in “native format” 

– Supports many query languages 

– Programmers retain control over performance 

– Open source 

Source: O’Reilly Blog post by Joseph Hellerstein (11/19/2008) 
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Philosophical differences 

• Parallel relational databases 

– Schema on write 

– Failures are relatively infrequent 

– “Possessive” of data 

– Mostly proprietary 

• MapReduce 

– Schema on read 

– Failures are relatively common 

– In situ data processing 

– Open source 
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MapReduce vs. RDBMS: grep 

SELECT * FROM Data WHERE field LIKE ‘%XYZ%’; 

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD. 
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MapReduce vs. RDBMS: select 

SELECT pageURL, pageRank 
FROM Rankings WHERE pageRank > X; 

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD. 
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MapReduce vs. RDBMS: aggregation 

SELECT sourceIP, SUM(adRevenue) 
FROM UserVisits GROUP BY sourceIP; 

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD. 
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MapReduce vs. RDBMS: join 

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD. 
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Why? 

• Schemas are a good idea 

– Parsing fields out of flat text files is slow 

– Schemas define a contract, decoupling logical from physical 

• Schemas allow for building efficient auxiliary structures 

– Value indexes, join indexes, etc. 

• Relational algorithms have been optimised for the underlying system 

– The system itself has complete control of performance-critical decisions 

– Storage layout, choice of algorithm, order of execution, etc. 
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Storage layout: row vs. column stores 

R1 

R2 

R3 

R4 

Row store 

Column store 
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Storage layout: row vs. column stores 

• Row stores 

– Easy to modify a record 

– Might read unnecessary data when processing 

• Column stores 

– Only read necessary data when processing 

– Tuple writes require multiple accesses 
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Advantages of column stores 

• Read efficiency 

– If only need to access a few columns, no need to drag around the rest 

of the values 

• Better compression 

– Repeated values appear more frequently in a column than repeated 

rows appear 

• Vectorised processing 

– Leveraging CPU architecture-level support 

• Opportunities to operate directly on compressed data 

– For instance, when evaluating a selection; or when projecting a column 
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Why not in Hadoop? 

Source: He et al. (2011) RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce-based Warehouse Systems. ICDE. 

No reason why not 

RCFile 
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Some small steps forward 

• MapReduce is a step backward in database access: 

– Schemas are good 

– Separation of the schema from the application is good 

– High-level access languages are good 

• MapReduce is poor implementation 

– Brute force and only brute force (no indexes, for example) 

• MapReduce is not novel 

• MapReduce is missing features 

– Bulk loader, indexing, updates, transactions… 

• MapReduce is incompatible with DMBS tools 

 

✔ 
✔ 

✔ 

Source: Blog post by DeWitt and Stonebraker 

? 

? 
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MODERN 
SQL-ON-HADOOP SYSTEMS 
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Analytical Database Systems 

Parallel (MPP): 

Teradata       Paraccel 

Pivotal 

Vertica                            Redshift 

Oracle (IMM)         Netteza 

DB2-BLU             InfoBright 

SQLserver                 Vectorwise 

(columnstore) 

open source: 

MySQL   LucidDB 

MonetDB 

 

? 
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SQL-on-Hadoop Systems 

Open Source: 

• Hive  (HortonWorks) 

• Impala (Cloudera) 

• Drill (MapR) 

• Presto (Facebook) 

Commercial: 

• HAWQ (Pivotal) 

• Vortex (Actian) 

• Vertica Hadoop (HP) 

• BigQuery (IBM) 

• DataBricks 

• Splice Machine 

• CitusData 

• InfiniDB Hadoop 
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“wrapped  

  legacy” 

“from   

scratch” 

SQL  
Maturity 

(performance+features) 

Hadoop Integration 

 “SQL on Hadoop” Systems 

Low Native 

High 

“outside 

Hadoop” 
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Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  

–table partitioning / distribution 

–exploiting correlated data 
       query-processor 

 CPU-efficient query engine 

 (vectorized or JIT codegen) 

 many-core ready 

 rich SQL (+authorization+..) 

 

 

           system 

 batch update infrastructure 

 scaling with multiple nodes 

 MetaStore & file formats 

 YARN & elasticity 
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Columnar Storage 

row-store column-store 

Date Customer Product Store 

+ easy to add/modify a record 

 

- might read in unnecessary data 

+ only need to read in relevant data 

 

- tuple writes require multiple accesses 

=> suitable for read-mostly, read-intensive, large data repositories  

Date Store Product Customer Price 
Price 

Query on data and store 

Inserting a new record 
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Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  

–table partitioning / distribution 

–exploiting correlated data 
       query-processor 

 CPU-efficient query engine 

 (vectorized or JIT codegen) 

 many-core ready 

 rich SQL (+authorization+..) 

 

           system 

 batch update infrastructure 

 scaling with multiple nodes 

 MetaStore & file formats 

 YARN & elasticity 
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Columnar Compression 

• Trades I/O for CPU 

– A winning proposition currently 

– Even trading RAM bandwidth for CPU wins 

• 64 core machines starved for RAM bandwidth  

• Additional column-store synergy: 

– Column store: data of the same distribution close together 

• Better compression rates 

• Generic compression (gzip) vs Domain-aware compression 

– Synergy with vectorized processing (see later) 

compress/decompress/execution, SIMD  

– Can use extra space to store multiple copies of data in different 

sort orders (see later) 
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Run-length Encoding 

Q1 
Q1 
Q1 
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Q1 
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… 

… 

Product ID Quarter 

(value, start_pos, run_length) 

(1, 1, 5) 

… 

… 

Product ID Quarter 

(Q2, 301, 350) 

(Q3, 651, 500) 

(Q4, 1151, 600) 

(2, 6, 2) 

(1, 301, 3) 
(2, 304, 1) 
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… 
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(Q1, 1, 300) 

(value, start_pos, run_length) 
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Bitmap Encoding 
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“Integrating Compression and Execution in Column-Oriented 

Database Systems” Abadi et. al,  SIGMOD ’06 

• For each unique 
value, v, in column c, 
create bit-vector b 

– b[i] = 1 if c[i] = v 

• Good for columns 
with few unique 
values 

• Each bit-vector can 
be further 
compressed if sparse 
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Q1 
Q2 
Q4 
Q1 
Q3 
Q1 
Q1 

Q2 
Q4 
Q3 
Q3 
… 

Quarter 

Q1 

0 
1 
3 
0 
2 
0 
0 

1 
3 
2 
2 

Quarter 

0 

0: Q1 
1: Q2 
2: Q3 
3: Q4 

Dictionary Encoding 

Dictionary 

+ 

“Integrating Compression and Execution in Column-Oriented 

Database Systems” Abadi et. al,  SIGMOD ’06 

• For each unique 
value create 
dictionary entry 

• Dictionary can 
be per-block or 
per-column 

• Column-stores 
have the 
advantage that 
dictionary 
entries may 
encode multiple 
values at once 
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Differential Encoding 

5:00 
5:02 
5:03 
5:03 
5:04 
5:06 
5:07 

5:10 
5:15 
5:16 
5:16 
… 

Time 

5:08 

2 
1 
0 
1 
2 

1 

1 

0 

Time 

2 

5:00 

1 

∞ 
5:15 

2 bits per 

value 

Exceptions (there 

are better ways to 

deal with 

exceptions) 

• Encodes values as b bit offset from 
previous value 

• Special escape code (just like 
frame of reference encoding) 
indicates a difference larger than 
can be stored in b bits 

– After escape code, original 
(uncompressed) value is written  

• Performs well on columns 
containing increasing/decreasing 
sequences 

– inverted lists 

– timestamps 

– object IDs 

– sorted / clustered columns 

“Improved Word-Aligned Binary 

Compression for Text Indexing” Ahn, 

Moffat, TKDE’06 
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Heavy-Weight Compression Schemes 

• Modern disks (SSDs) can achieve > 1GB/s 

• 1/3 CPU for decompression  3GB/s needed 

 Lightweight compression schemes are better 

 Even better: operate directly on compressed data 

“Super-Scalar RAM-CPU Cache Compression” 

Zukowski, Heman, Nes, Boncz, ICDE’06 
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Examples 

• SUMi(rle-compressed column[i])  SUMg(count[g] * value[g]) 

• (country == “Asia”)  countryCode == 6 

           strcmp                                     SIMD  

 

Benefits: 

• I/O - CPU tradeoff is no longer a tradeoff (CPU also gets improved) 

• Reduces memory–CPU bandwidth requirements 

• Opens up possibility of operating on multiple records at once 

 

Operating Directly on Compressed Data 

“Integrating Compression and Execution in Column-Oriented 

Database Systems” Abadi et. al,  SIGMOD ’06 
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Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  

–table partitioning / distribution 

–exploiting correlated data 
       query-processor 

 CPU-efficient query engine 

 (vectorized or JIT codegen) 

 many-core ready 

 rich SQL (+authorization+..) 

 

           system 

 batch update infrastructure 

 scaling with multiple nodes 

 MetaStore & file formats 

 YARN & elasticity 
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• data is spread based on a Key 

– Functions: Hash, Range, List 

•  “distribution” 

– Goal: parallelism 

• give each compute node a piece of the data 

• each query has work on every piece (keep everyone busy)  

• “partitioning” 

– Goal: data lifecycle management 

• Data warehouse e.g. keeps last six months 

• Every night: load one new day, drop the oldest partition 

– Goal: improve access patterm 

• when querying for May, drop Q1,Q3,Q4  (“partition pruning”)  

Table Partitioning and Distribution 

distribute by hash 

Q1 

Q2 

Q3 

Q4 

p
a
rtitio

n
 b

y ra
n

g
e

 

Which kind of function would you use for which method? 
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• Each node writes the partitions it owns 

– Where does the data end up, really? 

• HDFS default block placement strategy: 

– Node that initiates writes gets first copy 

– 2nd copy on the same rack 

– 3rd copy on a different rack 

• Rows from the same record should on the same node 

– Not entirely trivial in column stores 

• Column partitions should be co-located 

– Simple solution: 

• Put all columns together in one file (RCFILE, ORCFILE, Parquet) 

– Complex solution: 

• Replace the default HDFS block placement strategy by a custom one  

 

 

Data Placement in Hadoop 

distribute by hash 

Q1 

Q2 

Q3 

Q4 

p
a
rtitio

n
 b

y ra
n

g
e
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• Good old CSV 

– Textual, easy to parse (but slow), better compress it! 

• Sequence Files 

– Binary data, faster to process 

• RCfile 

– Hive first attempt at column-store 

• ORCfile 

– Columnar compression, MinMax 

• Parquet 

– Proposed by Twitter and Cloudera Impala 

– Like ORCfile, no MinMax 

 

 

 

 

Popular File Formats in Hadoop 

distribute by hash 

Q1 

Q2 

Q3 

Q4 

p
a
rtitio

n
 b

y ra
n

g
e
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Example: Parquet Format 
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Example: Parquet Format 
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HCatalog  (“Hive MetaStore”)  

De-facto Metadata Standard on Hadoop 

• Where are the tables? Wat do they contain? How are they Partitioned? 

• Can I read from them? Can I write to them? 

 

 

SQL-on-Hadoop challenges: 

• Reading-writing many file formats 

• Opening up the own datastore to 

foreign tools that read from it 

HCatalog makes UDFs less 

important! 
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Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  

–table partitioning / distribution 

–exploiting correlated data 
       query-processor 

 CPU-efficient query engine 

 (vectorized or JIT codegen) 

 many-core ready 

 rich SQL (+authorization+..) 

 

           system 

 batch update infrastructure 

 scaling with multiple nodes 

 MetaStore & file formats 

 YARN & elasticity 
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• Data is often naturally ordered 

– very often, on date 

• Data is often correlated 

– orderdate/paydate/shipdate 

– marketing campaigns/date 

– ..correlation is everywhere 

   ..hard to predict 

 

Zone Maps 

– Very sparse index 

– Keeps MinMax for every column 

– Cheap to maintain 

• Just widen bounds on  

 each modification 

 

Exploiting Natural Order 

Q: key BETWEEN 13 AND 15? 

Q: acctno BETWEEN 150 AND 200? 

z
o

n
e

 0
 

z
o

n
e

 1
 

z
o

n
e

 2
 

3
o

n
e

 3
 

zone 
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Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  

–table partitioning / distribution 

–exploiting correlated data 
       query-processor 

 CPU-efficient query engine 

 (vectorized or JIT codegen) 

 many-core ready 

 rich SQL (+authorization+..) 

 

           system 

 batch update infrastructure 

 scaling with multiple nodes 

 MetaStore & file formats 

 YARN & elasticity 
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DBMS Computational Efficiency? 
TPC-H 1GB, query 1 

• selects 98% of fact table, computes net prices and aggregates all 

• Results: 

– C program: ? 

– MySQL:  26.2s  

– DBMS “X”: 28.1s 

 

 

 

“MonetDB/X100: Hyper-Pipelining Query 

Execution ” Boncz, Zukowski, Nes, CIDR’05 
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DBMS Computational Efficiency? 
TPC-H 1GB, query 1 

• selects 98% of fact table, computes net prices and aggregates all 

• Results: 

– C program: 0.2s 

– MySQL:  26.2s  

– DBMS “X”: 28.1s 

 

 

 

“MonetDB/X100: Hyper-Pipelining Query 

Execution ” Boncz, Zukowski, Nes, CIDR’05 
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SCAN 

 

 

SELECT 

 

 

PROJECT 

alice 22 101 

next() 

next() 

next() 

ivan 37 102 

ivan 37 102 

ivan 37 102 

ivan 350 102 

alice 22 101 

SELECT   id, name  

 (age-30)*50 AS bonus 

FROM employee 

WHERE   age > 30 

350 

FALSE TRUE   

22 > 30 ? 37 > 30 ? 

37 – 30  7 * 50  

7 

How Do Query Engines Work?  
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SCAN 

 

 

SELECT 

 

 

PROJECT 

next() 

next() 

next() 

ivan 350 102 

Operators 

 
Iterator interface 

-open() 

-next(): tuple 

-close() 

How Do Query Engines Work?  
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SCAN 

 

 

SELECT 

 

 

PROJECT 

alice 22 101 

next() 

next() 

next() 

ivan 37 102 

ivan 37 102 

ivan 37 102 

ivan 350 102 

alice 22 101 

350 

FALSE TRUE   

22 > 30 ? 37 > 30 ? 

37 – 30  7 * 50  

7 
Primitives 

 
Provide computational 

functionality 

 

All arithmetic allowed in  

expressions,  

e.g. Multiplication 

 

 
mult(int,int)  int 

7 * 50  

How Do Query Engines Work?  
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SCAN 

 

 

SELECT 

 

 

PROJECT 

next() 

next() 

101 

102 

104 

105 

alice 

ivan 

peggy 

victor 

22 

37 

45 

25 

7 

15 

FALSE 

TRUE 

TRUE 

FALSE 

37 

45 

ivan 

peggy 

102 

104 

350 

750 

ivan 

peggy 

102 

104 

350 

750 

Observations: 
 
next() called much less 
often  more time spent 

in primitives less in 
overhead 
 
primitive calls process an 
array of values in a 
loop: 
 
 
 
 
 
 

> 30 ? 

- 30 * 50 

22 

37 

45 

25 

alice 

ivan 

peggy 

victor 

101 

102 

104 

105 

 
 
 
“Vectorized In Cache 
Processing” 
 
vector = array of 
~100 
 
processed in a tight 
loop 
 
CPU cache Resident 
 
 
 
 

next() 

“MonetDB/X100: Hyper-Pipelining Query Execution 

” Boncz, Zukowski, Nes, CIDR’05 
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PROJECT 

next() 

next() 
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22 
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45 

25 
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15 

FALSE 

TRUE 

TRUE 

FALSE 

37 

45 

ivan 

peggy 

102 
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350 
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ivan 

peggy 

102 

104 

350 

750 

Observations: 
 
next() called much less 
often  more time spent 

in primitives less in 
overhead 
 
primitive calls process an 
array of values in a 
loop: 
 
 
 
 
 
 

> 30 ? 

- 30 * 50 

CPU Efficiency depends on “nice” code 
- out-of-order execution 
- few dependencies (control,data) 
- compiler support  
 
Compilers like simple loops over arrays 
- loop-pipelining 
- automatic SIMD 

22 

37 

45 

25 

alice 

ivan 

peggy 

victor 

101 

102 

104 

105 

next() 

“MonetDB/X100: Hyper-Pipelining Query Execution 

” Boncz, Zukowski, Nes, CIDR’05 
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SCAN 

 

 

SELECT 

 

 

 

PROJECT 
FALSE 

TRUE 

TRUE 

FALSE 

350 

750 

Observations: 
 
next() called much less 
often  more time spent 

in primitives less in 
overhead 
 
primitive calls process an 
array of values in a 
loop: 
 
 
 
 
 
 

> 30 ? 

* 50 

CPU Efficiency depends on “nice” code 
- out-of-order execution 
- few dependencies (control,data) 
- compiler support  
 
Compilers like simple loops over arrays 
- loop-pipelining 
- automatic SIMD 

FALSE 

TRUE 

TRUE 

FALSE 

> 30 ? 

7 

15 

- 30 

350 

750 

* 50 

for(i=0; i<n; i++) 

  res[i] = (col[i] > x) 

for(i=0; i<n; i++) 

  res[i] = (col[i] - x) 

for(i=0; i<n; i++) 

  res[i] = (col[i] * x) 

“MonetDB/X100: Hyper-Pipelining Query Execution 

” Boncz, Zukowski, Nes, CIDR’05 
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VLDB 2009 Tutorial                                                               54 

Varying the Vector size 

Less and less iterator.next() 
and  

primitive function calls 
(“interpretation overhead”) 

“MonetDB/X100: Hyper-Pipelining Query 

Execution ” Boncz, Zukowski, Nes, CIDR’05 
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VLDB 2009 Tutorial                                                               55 

Vectors start to exceed the 
CPU cache, causing 

additional memory traffic 

“MonetDB/X100: Hyper-Pipelining Query 

Execution ” Boncz, Zukowski, Nes, CIDR’05 

Varying the Vector size 
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Systems That Use Vectorization 

• Actian Vortex (Vectorwise-on-Hadoop) 

• Hive, Drill 



event.cwi.nl/lsde 

Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  

–table partitioning / distribution 

–exploiting correlated data 
       query-processor 

 CPU-efficient query engine 

 (vectorized or JIT codegen) 

 many-core ready 

 rich SQL (+authorization+..) 

 

           system 

 batch update infrastructure 

 scaling with multiple nodes 

 MetaStore & file formats 

 YARN & elasticity 
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Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  

–table partitioning / distribution 

–exploiting correlated data 
       query-processor 

 CPU-efficient query engine 

 (vectorized or JIT codegen) 

 many-core ready 

 analytical SQL (windowing) 

 

           system 

 batch update infrastructure 

 scaling with multiple nodes 

 MetaStore & file formats 

 YARN & elasticity 
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Asynchronous 

Data Transfer 

TUPLE MOVER 

> Read Optimized 

Store (ROS) 
• On disk 

• Sorted / Compressed 

• Segmented 

• Large data loaded direct 

Batch Update Infrastructure (Vertica) 

Challenge: hard to update columnar compressed data  

(A B C | A) 

 

 
 

A 

 

 

 

 

 
 

B 

 

 

 

 

 
 

C 

 

 

 

Trickle 

Load 

> Write Optimized 

Store (WOS) 

Memory based 

Unsorted / Uncompressed 

 Segmented 

 Low latency / Small quick 

inserts 

 

 
 

A 

 

 

 

 

 
 

B 

 

 

 

 

 
 

C 
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Batch Update Infrastructure (Hive) 

Challenge: HDFS read-only + large block size 

Merge During Query Processing 
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Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  

–table partitioning / distribution 

–exploiting correlated data 
       query-processor 

 CPU-efficient query engine 

 (vectorized or JIT codegen) 

 many-core ready 

 rich SQL (+authorization+..) 

 

           system 

 batch update infrastructure 

 scaling with multiple nodes 

 MetaStore & file formats 

 YARN & elasticity 
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SQL-99 OLAP Extensions 

• ORDER BY .. PARTITION BY 

– window specifications inside a partition 

• first_value(), last_value(), … 

– Rownum(), dense_rank(), … 
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Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  

–table partitioning / distribution 

–exploiting correlated data 
       query-processor 

 CPU-efficient query engine 

 (vectorized or JIT codegen) 

 many-core ready 

 rich SQL (+authorization+..) 

 

           system 

 batch update infrastructure 

 scaling with multiple nodes 

 MetaStore & file formats 

 YARN & elasticity 

 



event.cwi.nl/lsde 

Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  

–table partitioning / distribution 

–exploiting correlated data 
       query-processor 

 CPU-efficient query engine 

 (vectorized or JIT codegen) 

 many-core ready 

 rich SQL (+authorization+..) 

 

           system 

 batch update infrastructure 

 scaling with multiple nodes 

 MetaStore & file formats 

 YARN & elasticity 
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YARN possibilities and limitations 

Containers are used to assign: 

• cores 

• RAM 

 

Limitations: 

• no support for disk I/O, network (thrashing still possible) 

• Long-running systems (e.g. DBMS) may want to adjust cores and RAM 

over time depending on workload  “elasticity” 
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Conclusion 

• SQL-on-Hadoop area is very active 

– many open-source and commercial initiatives 

• There are many design dimensions 

– All design dimensions of analytical database systems 

• Column storage, compression, vectorization/JIT, MinMax 

pushdown, partitioning, parallel scaling, update handling, SQL99, 

ODBC/JDBC APIs, authorization 

– Hadoop design dimensions 

• HCatalog support, reading from and getting read from other 

Hadoop tools (/writing to..), file format support, HDFS locality, 

YARN integration 
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SQL IN THE CLOUD 
- BUT NOT ON HADOOP 
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Amazon Redshift 

• Cloud version of ParAccel, a parallel database 

– ParAccel is hard to manage, maintain 

– Redshift invested in simplying management, using web interface 

• No knobs, kind of elastics, User Defined Functions (python) 

• Highly performant, but storage more expensive than S3 (local disks) 
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Snowflake 

• Brand-new, from-scratch system that works in AWS – RedShift competitor 

• Stores data on S3 (cheap!) but caches it in local disks for performance 

• Highly elastic, supports UDFs using JavaScript, table snapshots (“clone table”) 

• Puts JSON documents in automatically recognized table format (queryable) 

 

 


